Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
1.
Nat Biotechnol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744947

ABSTRACT

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

2.
Diabetes ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701355

ABSTRACT

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes mellitus (DM) is unclear. Here, we used a recently validated stable-isotope dilution highperformance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify a panel of BAs in fasting plasma from subjects (n=2,145) and explored structural and genetic determinants of BAs linked to DM, insulin resistance and obesity. Multiple 12α-hydroxylated BAs were associated with DM [adjusted odds ratios (aORs):1.3-1.9 (all P<0.05)] and insulin resistance [aORs:1.3-2.2 (all P<0.05)]. Conversely, multiple 6a-hydroxylated BAs and isolithocholic acid (Iso-LCA) were inversely associated with DM and obesity [aORs:0.3-0.9 (all P<0.05)]. Genome-wide association studies (GWAS) revealed multiple genome-wide significant loci linked with nine of the 14 DM-associated BAs, including a locus for Iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated DCA levels were causally associated with higher BMI, and Iso-LCA levels were causally associated with reduced BMI and DM risk. In conclusion, comprehensive large-scale quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and Iso-LCA, are clinically associated with and genetically linked to obesity and DM.

3.
Bone ; 184: 117092, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38575048

ABSTRACT

PURPOSE: Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS: Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS: Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION: Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.

4.
J Biol Chem ; 300(5): 107224, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537695

ABSTRACT

Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.

5.
Metabolites ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535334

ABSTRACT

The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

6.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464150

ABSTRACT

The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.

7.
Trends Endocrinol Metab ; 35(3): 183-184, 2024 03.
Article in English | MEDLINE | ID: mdl-38302401

ABSTRACT

Integrating molecular traits into genetic studies enhances our understanding of how DNA variation influences complex clinical and physiological phenotypes. In a recent article, Benson and colleagues apply this systems genetics approach with proteomics and metabolomics data in plasma from humans to identify and validate several previously unrecognized causal protein-metabolite associations.


Subject(s)
Metabolomics , Proteomics , Humans , Phenotype , Genome-Wide Association Study
8.
Circ Res ; 134(4): 371-389, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38264909

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Subject(s)
Cardiomyopathies , Heart Failure , Propionates , Sirtuin 3 , Humans , Mice , Animals , Heart Failure/metabolism , Stroke Volume/physiology , NAD , Sirtuin 3/genetics , Indoles/pharmacology , Niacinamide
9.
Elife ; 122023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060277

ABSTRACT

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Mice , Animals , Coronary Artery Disease/genetics , Atherosclerosis/genetics , Gene Regulatory Networks , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
10.
Elife ; 122023 11 14.
Article in English | MEDLINE | ID: mdl-37962168

ABSTRACT

Quantitative traits are often complex because of the contribution of many loci, with further complexity added by environmental factors. In medical research, systems genetics is a powerful approach for the study of complex traits, as it integrates intermediate phenotypes, such as RNA, protein, and metabolite levels, to understand molecular and physiological phenotypes linking discrete DNA sequence variation to complex clinical and physiological traits. The primary purpose of this review is to describe some of the resources and tools of systems genetics in humans and rodent models, so that researchers in many areas of biology and medicine can make use of the data.


Subject(s)
Multifactorial Inheritance , Systems Biology , Humans , Multifactorial Inheritance/genetics , Phenotype
11.
Curr Atheroscler Rep ; 25(12): 1013-1023, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008808

ABSTRACT

PURPOSE OF REVIEW: Coronary artery disease is a complex disorder and the leading cause of mortality worldwide. As technologies for the generation of high-throughput multiomics data have advanced, gene regulatory network modeling has become an increasingly powerful tool in understanding coronary artery disease. This review summarizes recent and novel gene regulatory network tools for bulk tissue and single cell data, existing databases for network construction, and applications of gene regulatory networks in coronary artery disease. RECENT FINDINGS: New gene regulatory network tools can integrate multiomics data to elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At the same time, updates to coronary artery disease expression data in existing databases have enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene regulatory networks have proven extremely useful in understanding CAD heritability beyond what is explained by GWAS loci and in identifying mechanisms and key driver genes underlying disease onset and progression. Gene regulatory networks can holistically and comprehensively address the complex nature of coronary artery disease. In this review, we discuss key algorithmic approaches to construct gene regulatory networks and highlight state-of-the-art methods that model specific modes of gene regulation. We also explore recent applications of these tools in coronary artery disease patient data repositories to understand disease heritability and shared and distinct disease mechanisms and key driver genes across tissues, between sexes, and between species.


Subject(s)
Coronary Artery Disease , Gene Regulatory Networks , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Gene Expression Regulation
12.
Cell Mol Gastroenterol Hepatol ; 16(6): 943-960, 2023.
Article in English | MEDLINE | ID: mdl-37611662

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a complex disease involving both genetic and environmental factors in its onset and progression. We analyzed NASH phenotypes in a genetically diverse cohort of mice, the Hybrid Mouse Diversity Panel, to identify genes contributing to disease susceptibility. METHODS: A "systems genetics" approach, involving integration of genetic, transcriptomic, and phenotypic data, was used to identify candidate genes and pathways in a mouse model of NASH. The causal role of Matrix Gla Protein (MGP) was validated using heterozygous MGP knockout (Mgp+/-) mice. The mechanistic role of MGP in transforming growth factor-beta (TGF-ß) signaling was examined in the LX-2 stellate cell line by using a loss of function approach. RESULTS: Local cis-acting regulation of MGP was correlated with fibrosis, suggesting a causal role in NASH, and this was validated using loss of function experiments in 2 models of diet-induced NASH. Using single-cell RNA sequencing, Mgp was found to be primarily expressed in hepatic stellate cells and dendritic cells in mice. Knockdown of MGP expression in stellate LX-2 cells led to a blunted response to TGF-ß stimulation. This was associated with reduced regulatory SMAD phosphorylation and TGF-ß receptor ALK1 expression as well as increased expression of inhibitory SMAD6. Hepatic MGP expression was found to be significantly correlated with the severity of fibrosis in livers of patients with NASH, suggesting relevance to human disease. CONCLUSIONS: MGP regulates liver fibrosis and TGF-ß signaling in hepatic stellate cells and contributes to NASH pathogenesis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Liver Cirrhosis/genetics , Transforming Growth Factor beta , Transforming Growth Factors , Matrix Gla Protein
13.
Nature ; 620(7972): 192-199, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495690

ABSTRACT

Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.


Subject(s)
Adipocytes , Adipose Tissue, White , Epithelium , Mammary Glands, Animal , Thermogenesis , Animals , Female , Male , Mice , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Epithelium/innervation , Epithelium/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/innervation , Mammary Glands, Animal/physiology , Cold Temperature , Sympathetic Nervous System/physiology , Energy Metabolism , Oxidation-Reduction , Sex Characteristics
14.
Elife ; 122023 06 05.
Article in English | MEDLINE | ID: mdl-37276142

ABSTRACT

Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.


Subject(s)
Heart Failure , Proteome , Animals , Mice , Cardiomegaly/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex I/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Mice, Inbred Strains , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Proteome/metabolism
15.
bioRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37333408

ABSTRACT

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.

16.
Cell Host Microbe ; 31(6): 1038-1053.e10, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37279756

ABSTRACT

The microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA and other purines in the gut and systemically. Thus, gut microbes are important drivers of host global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may represent a mechanism by which gut bacteria influence health.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Homeostasis , Purines/metabolism , Bacteria/genetics , Bacteria/metabolism , Uric Acid/metabolism
17.
Metabolism ; 145: 155591, 2023 08.
Article in English | MEDLINE | ID: mdl-37230214

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Female , Humans , Male , Mice , Diet, High-Fat/adverse effects , Fructokinases/genetics , Fructokinases/metabolism , Fructose/pharmacology , Lipogenesis/physiology , Liver/metabolism , Models, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism
18.
Cell Rep ; 42(5): 112499, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37178122

ABSTRACT

Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.


Subject(s)
Adaptation, Physiological , Transcriptome , Male , Middle Aged , Humans , Female , Mice , Animals , Transcriptome/genetics , Obesity/metabolism , Acclimatization , Adipose Tissue/metabolism , Muscle, Skeletal/metabolism
19.
J Exp Med ; 220(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36880999

ABSTRACT

The small intestine plays a key role in immunity and mediates inflammatory responses to high fat diets. We have used single-cell RNA-sequencing (scRNA-seq) and statistical modeling to examine gaps in our understanding of the dynamic properties of intestinal cells and underlying cellular mechanisms. Our scRNA-seq and flow cytometry studies of different layers of intestinal cells revealed new cell subsets and modeled developmental trajectories of intestinal intraepithelial lymphocytes, lamina propria lymphocytes, conventional dendritic cells, and enterocytes. As compared to chow-fed mice, a high-fat high-sucrose (HFHS) "Western" diet resulted in the accumulation of specific immune cell populations and marked changes to enterocytes nutrient absorption function. Utilizing ligand-receptor analysis, we profiled high-resolution intestine interaction networks across all immune cell and epithelial structural cell types in mice fed chow or HFHS diets. These results revealed novel interactions and communication hubs among intestinal cells, and their potential roles in local as well as systemic inflammation.


Subject(s)
Diet, Western , Intestines , Animals , Mice , Homeostasis , Enterocytes , Cell Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...